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Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice
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We report on theoretical investigation of the electron and phonon energy spectra in a three-dimensional
regimented quantum dot superlattice. Our results are obtained by numerical solution of thairgghrand
elasticity equations using the finite-difference method. The calculations are performed for a Ge/Si material
system taking into account characteristic band-gap offsets, elastic stiffness constants, and other relevant pa-
rameters. Coupling among quantum dots in such a regimented structure results in formation of extended
electron states and minibands, provided that the disorder in the system is small. Electron and phonon densities
of states of these artifici@luantum dot crystalare also calculated. We demonstrate that the acoustic-phonon
dispersion in the quantum dot superlattice undergoes strong modification, which leads to emergence of qua-
sioptical branches. These branches are much lower in energy than optical phonons in bulk semiconductors and
thus may strongly affect energy relaxation processes. Other phenomena that originate from the specific electron
and phonon spectra in quantum dot superlattices, such as negative differential conductivity and carrier scat-
tering anisotropy, are also discussed.
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[. INTRODUCTION tant to note that the analogy with real crystals goes further,
specifically, to the carrier energy spectrum. In the discussion
Physical properties of individual semiconductor quantumto follow the term quantum dot crystal is used when the
dots(OD’s) have been extensively studied both theoreticallyintention is to emphasis that the regimentation, size, interdot
and experimentally. The effects of the size, shape, strain distance, and quality of the dots are such that extended states
fields, Coulomb interaction, and dielectric screening on elecare formed. As a consequence, the energy spectrum of such
tronic states and optical response of individual quantum dotsupra crystals is characterized by emergence of 3D mini-
are addressed in the literature in great dédilin a simpli-  bands separated by complete stop bands or energy minigaps.
fied picture, transport properties of arrays of weakly coupledrhe latter is not implied when the term quantum dot super-
quantum dotgwith wave functions well localized in a dot lattice is used.
are described in terms of hopping conduction, while optical Formation of extended electron states and minibands have
response is defined by the energy spectrum of individual dotglready been observed in multiple quantum dot arrays. Arte-
and inhomogeneous broadening due to the size distributiomyev et al1*~1® demonstrated experimentally the evolution
A more interesting and potentially practically important caseof electron states from individuglocalized to collective
is when strong coupling among dots leads to formation oflextended states in a dense quantum dot ensemble that con-
two- (2D) or three-dimensiondBBD) extended minibands in- sisted of monodisperse small CdSe dots of average radius
stead of localized quantum dot states. Such energy spectruRr~1.6—1.8 nm arranged in a cubical or hexagonal lattice.
modification is expected to take place provided thiathe  Song et all’ investigated in-plane photocurrent in self-
qguantum dots are regimented, e.g., periodicity of the quanassembled Ga, ,As/GaAs quantum dot arrays. They re-
tum dots in an array is very higlii) the dot size is homo- ported that samples with inhomogeneous QD sizes show
geneousfiii) interdot distance and barrier height are smallhopping conduction, which indicates the localization of car-
enough for significant electron wave-function overlap; andriers in individual dots, while the highly ordered and size-
(iv) the dots are crystalline, with low surface defect concenhomogeneous quantum dot arrays exhibit negative differen-
tration. Quantum dot structures fabricated using differential conductance that has been attributed to carrier energy
techniques always have some degree of disorder, which caminiband formation. Yakimoet al!8°investigated in-plane
be described by the Anderson or Lifshitz models. At theelectrical conductivity of arrays of Ge quantum dots on Si
same time, extended states and minibands can still be formedith dot sizeD~12—19 nm. In our preliminary study, which
as long as the bandwidth due to wave-function overlap exused an analytical solution of the Sctinger equation for
ceeds the total broadening, which is mostly determined byhe simplified model potential, we calculated the low-field
the disorder inhomogeneous broadening. electrical conductivity in QDSRef. 20 and obtained good
Regimented or partially regimented 2D and 3D multiple agreement with experimental curves of Refs. 18 and 19.
arrays of quantum dots, also termed quantum dot superlat- Apart from the fundamental scientific importance of the
tices (QDS), have already been fabricated by a variety ofinvestigation of electrorthole) and phonon spectra in regi-
techniqueg~"'1-13Regimentation along all three directions mented quantum dot arrays, there is a significant practical
in a structure described in Ref. 13 brings an analogy withinterest in addressing this problem. Application of QDS as
bulk crystals. In these artificial crystals the role of atoms isinfrared photodetectors requires high values of moBility
played by quantum dots. Thus, we refer to these structures asder to sweep the carriers. In the miniband transport regime
guantum dot crystal§QDC) or “supra crystals.” It is impor-  one can expect much higher carrier mobility than in the hop-
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properties of a quantum dot crystal, e.g., thgimented en-
sembleof quantum dots, we limit our analysis to the simplest
parallelepiped shape of the dots. The numerical solution
scheme described here can be readily applied to dots of ar-
bitrary geometry.

A. Electron spectrum

Since experimentally investigated quantum dot arrays
usually have quantum dot sizes significantly larger than in-
teratomic distancés’* we restrict our model to dots of at
least a few nanometers in size. In this case we can calculate
the electron spectrum of QDC in the envelope wave-function
approximation applied to a potential barrier profile of choice.
The one-electron Schdinger equation for such a system is

written as

FIG. 1. Schematic structure of the orthorhombic quantum dot
crystal. 21
o reaime” Min _ _ =5 Vi V() [e(n) =Eg(n), ®
ping regime.’ Miniband conduction may also be desirable
for high-temperature thermoelectric applications of quantum
dot arrays-?2 Despite recent achievements in self-assembly,hare 7 is Planck’s constant, &f* is the reciprocal

of QDS and many experimental reports on electrical and OPggfective-mass tensog(r) is the electron wave functior
tical characterizations of such structures, few theoretical pag the electron energy, and the confining potential profile

pers deal with characteristics ofragimented ensemblef 1) ¢orresponds to an infinite sequence of quantum dots of

ﬁtuanttun;3_(jzgt§. IThgthrepcljrtsl tj{hat fc?r? b? ioun_d 'P tth izesL, Ly, andL, separated by the barriers of thicknesses
eratur eal with caicuiation of Ine electronic states Hx, Hy, andH,. The profileV(r) is set to zero in the

only under some simplifying assumptions. Most theoreucaloarrier region, while inside the quantum dot it is equal to the

investigations are still focused on development of an acCUpand offset in the conductiofor valence band of the con-

ratle dtﬁ_scnpnon of prochjerttleE of a single dot. | h sidered material system taken with a negative sign. The in-
n this paper we uncertake a more general approach angy,4iion about band structure of the host materials is re-

investigate bothelectron and phonon spectra of three- flected in the reciprocal effective-mass tensom/ The

dimensional reg!mented quantum q0t Superlattices using alffect of strain was approximately taken into account by
accurate ”‘%me”ca' '_s,olutlon t_echnlque. The approach p.roc'hanging the value of the corresponding band offset. The
posed in this paper is a drastic improvement of our earlie

r e . ) . .
. . . . nfinin ntialV(r) w. nsider iecewi
semianalytical solution for the model potenfiaiSince the o g potentialV(r) was considered to be a piecewise

S . uniform function.
symmetry of the model potential is the same as in one of the

considered systems, the approach described in Ref. 25 gives

very good qualitative result;. The sgmianalytical solution is B. Phonon spectrum

useful for better understanding specific features of the elec- o i _

tron spectrum in QDC especially below the potential barrier. El€ctron (hole) mobility in technologically important
On the other hand, for the subsequent calculation of the reS€Miconductors such as Si or SiGe at room temperature is

lated physical properties, such as optical spectra or electricdMited by scattering on both acoustic and optical phonons.

conductivity, the absolute error of that approach is up to! e SPectrum of optical phonons, which have high energy at

several dozens meV and increases significantly for thd'€ Zone center, is not altered in QDC as strongly as the
above-the-barrier states, which is unacceptable. The presepR€Crum of acoustic phonons. There have been experimental
calculation based on the finite-difference meth@eDM) indications that, especially at low temperatures, acoustic-
scheme allows us to accurately describe both electron arRf’onon scattering dominates carrier relaxation in guantum
phonon spectra in 3D QDC, examine above-the-barrieFot arrays-’ Thus, we restrict our investigation to analysis of

states, and take disorder into consideration by extending tH&€ acoustic-phonon modes in 3D-ordered quantum dots em-
simulation domain above one period of the structure. bedded in some host material with different crystalline prop-
erties. At a long-wavelength limit, the acoustic-phonon dis-

persion can be described by a continuum model.
If a quantum dot structure is made of semiconductors of
We consider an orthorhombic 3D-regimented quantunfubic symmetry, such as Si and Ge with a diamond lattice
dot superlatticeFig. 1) and assume that the conditions for (Of, space groupor A*B® compounds such as GaAs or InAs
formation of the extended carrier states are satisfied. Ouwith a zinc-blende Iattice'l(ﬁ space group the number of
goal is to investigate electron and phonon spectra of thisndependent elastic stiffness constants in the elasticity equa-
artificial quantum dot crystal. Since we are interested intion reduces to 3:

Il. THEORETICAL MODEL
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The similar expressions for and z components of the dis- <
placement vecton of a geometrical point inside the material @40 b ﬁ‘ _\
of QDC with (i=x,y,z) coordinates may be obtained by
cyclic exchange ofiy,uy ,u,) and(x,y,2. The elasticity Eq. N A D y0€
(2) in a nonuniform medium results from Euler-Lagrange "z t i

equations for the system with a cubic crystal lattice. The 4{
solution of these equations for the quantum dot “supra crys-

tal” can be expressed in a plane-wave form by analogy with # # /#’
regular bulk crystals, 1 1 T I

u(r,t)=A(r)exdi(g-r—wt)], STF 4

where|g|=2=/\ is the phonon wave vector, with phonon ® %% J
wavelength\; r is the coordinate vectot;is time; andw is 37

the phonc_m frequency. The eigenvalues of E2).in bulk . FIG. 2. Simulation domain in orthorhombic quantum dot crys-
material linearly depend on the phonon wave vector, as ifys it indicated grid and boundary conditions. Eigenfunctiens

should be in the continuum approximation. Note that theso considered partial differential equations are also shown.
phonon modes are of a pure compressiongitudina) type

or a pure sheaftransversg type if and only if the wave

propagates along a crystallographic direction of high symmeShape it is convenient to use a square grid with a constant
try: otherwise it has components of each type. step. Since we do not consider disorder, we can limit the

The limits of the applicability of the continuum approxi- Numerical procedure to just one period of the strucisee

mation can be estimated from the comparison of the calcuFi9- 2 . - . .
lated dispersion branches with experimental data and lattice- 'NStéad o analytical partial differential equations for the

dynamics simulation results. Approximately, as long asVhole domain we now have a set pN,NyN, linear alge-

acoustic-phonon dispersion remains linear the phonons caif@c equations for the eigenfunctiops at each¢th node of

be formally treated in the continuum long-wave approxima-th€ grid. HereN; denotes a number of nodes in thelirec-
tion. Based on the experimental data provided in Ref. 28, wdon- The finite-difference equations were obtained using
can estimate the lowest limit for Si to be about 10 meV alongEuler-Lagrange equations from the discretized Lagrangian of
the [111] crystallographic direction and about 5 meV for Ge e system, which ensured the Hermiticity of the correspond-
along the same direction. It corresponds to about one-thirdd Matrix constructed on bonds with material parameters
(one-fifth) of the Brillouin zone for silicor(germaniury. The ~ detérmined on them. Material parameters, such as reciprocal
latter translates to the feature size of 2—3 atomic layers iffffective mass in the Schdinger equation and elastic stiff-
real space. Thus our approach is rather accurate for descrif€SS constants in the elasticity equation, change abruptly at
tion of acoustic phonons in QDC with a feature size of sev-N€ quantum dot boundaries. The latter gives one an uncer-
eral nanometers. The unit cell of the QDC of orthorhombict@inty in defining the difference operator if the nodal point
symmetry is analogous to the unit cell of regular bulk crys-i€s on the boundary. To avoid this uncertainty we put the
tals. Using this analogy, one can solve the elasticity @j. vertex of the quantum dot, which is the closest to the origin,

iq,d,

H H H 1 1 1
with new quasiperiodic boundary conditions for QDC, to the point with coordinate;, 3, 3), and further assumed
that the material parametprchanges linearly from its value
u(r+D)=expiq-D)u(r). (3) p; in one material to its valu@, in another material. We

found that the convergence is the best when the grid is cho-

Equation(3) constitutes the Bloch-Floquet theorem for an g i such a way that the quantum dot boundaries are close
artificial quantum dot crystal, where vectorD 5 ihe middle of a bond.

=(D«,Dy,D,) describes the new periodicity of the structure

, In the FDM scheme for the Schiimger equation we used
(see Fig. L

a central difference approximation for double derivatives.
The diagonal element of the QDC Hamiltonian, which cor-
lll. NUMERICAL APPROACH responds to a node with coordinatessji,ayjy.a,j,), has

The essence of the finite-difference method is a substitut-he following index:

tion for each differential operator in Eq§l) and (2), the

finite-difference operator defined on a preselected grid. The
common problem associated with this method is the selec-
tion of an appropriate grid to achieve the desired accuracy. In
our case, due to orthorhombic symmetry of QDC and the do&nd it is equal to

Nyyz= NxNyj 2T Ny yt Ixs
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. FIG. 3. Dependence of the eigenvalues of Sdinger (a) and
nxy(z+l)nxyz: - =% > K22, (6) elasticity (b) equations at the center of the quasi-Brillouin zone of
My,y.z+1/287 Ge/Si QDC with the following parameter&,=L,=5, L,=2.5,

Hy=Hy=2.5, andH,=1.25nm as a function of the inverse

Here the phase shift; is equal to unity everywhere except squared number of nodes in every direction. The dashed lines are
for the points withj .= N,, where the phase shift is given by |inear extrapolations of the dependencies to zero. The zero point
the expression corresponds to the infinite number of nodes and thus the extrapo-
lated eigenvalues are close to the “true” ones.
r§=eX[i(lq§d§)
. . IV. RESULTS AND DISCUSSION

In the above Eqd4)—(6) T, is the complex conjugate of; .
Due to its locality the finite-difference version of the As anexample of a material system we consider Ge quan-
Schralinger equation has only seven nonzero elements pgum dots grown on Si by molecular-beam epita®yBE).
row in the QDC electrorthole) Hamiltonian of (N,N,N,)  Although state-of-the-art Ge/Si QDS are characterized only
X (NyNyN,) size. by partial regimentatiofy? continuous progress in MBE self-

The FDM scheme for elasticity E42) is more compli- assembly most likely will lead to synthesis of 3D-regimented
cated than for Schiobnger Eq.(1) since it contains mixed quantum dot superlattices similar to those reported in Refs.
derivatives. The corresponding matrix has 35 nonzero elel2 and 13. We have carried out numerical simulations for
ments in each MANyN,) row. QDC with the following parameters:, —L =5.0,L,=2.5,

To find the eigenvalues of the matrices generated for eled,=H,=2.5, and H,=1.25 nm; mhh O49m0, m‘,%
tron states and phonon modes we usedakACK software =0.28n0, andvhh—0.450 eV. For simplicity we restrict our
packagé? It uses the implicitly restarted Arnoldi methd  analysis to heavy holes in Ge/Si QDC. This is done for two
designed to solve large-scale eigenvalue problems and aleasons. First, most of the band-gap discontinuity between Si
lows one to diagonalize the sparse matrices such as thosed Ge goes to the valence band. Secondly, we can use the
described in this section. single-valley effective mass approximation since a single
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potential energy maximum in the valence band is located in .

T point. '
§21
50 73 - f
A. Accuracy of the FDM scheme L . ﬁ H
First, we verify the accuracy of the results obtained using 0 e — =
the outlined approach. The most important question when [ 1
dealing with numerical methods is dependence of the results g K| ft
on the grid step, i.e., convergence of the developed FDM & s
scheme. Three-dimensional periodicity of QDC structure ?‘100' Hm ]

dramatically reduces the number of nodes necessary for &5

good convergence of the finite-difference scheme compared §

to a single quantum dot task. m
Figures 3a) and 3b) show the dependence of the eigen- =~ 2 F e | s

values of Schidinger [Fig. 3(@)] and elasticity[Fig. 3(b)] 0

equations at the center of the quasi-Brillouin z¢@B2) as

a function of the inverse squared number of noNes every | .

direction. The zero point corresponds to the infinite number 300 Eramme: =

of nodes and thus the extrapolated eigenvalues are close t« 350 | ‘ | . | . | . |

the “true” ones. The relative erros for N=15 (i.e., only 0.0 0.1 0.2 0.3 0.4

five nodes in barriers and ten inside dotaries in the range Ginooy (Nm)

0.31%-4.01% for elasticity Eq2) eigenvalues and 0.32%— @

1.97% for phonon energies, correspondingly. The electron

150 b 4

Electr

-250 | -

energy relative error fol=15 is 1.04%—-4.45%. If the num- 100 — ; —

ber of nodes increases to 30, the error reduces to 0.33%-
1.12% for electron and 0.00%-0.93% for phonon energies.
Thus it is enough to have as few as five to ten nodes inside a
single quantum dot and in the spacer to achieve accuracy

231,321

better than 5% for the energy. Such good convergence make: L

it possible in the future to take disorder into CONSIAErAtion Dy g fu-sessssrmereememmsssssmmerr a2 e8]

expanding the simulation subdomain to several periods of L — T
QDC. Nevertheless we choose to uée 30 in our calcula- 100 - =
tions for the system without disorder. ! - ]

-150 -
B. Electron spectrum in QDC

Solid lines in Figs. 4a) and 4b) show the heavy-hole Ul ki |
dispersion of Ge/Si QDC calculated using the FDM outlined ., 1
in Sec. lll. The energy is given with respect to the position of
the potential barrier. Double brackets for the wave-vector
notation are introduced to distinguish direction in quantum [
dot supra crystals from crystallographic directions. For com- s, . i . L . ! . L s L

121, 211

Electron Energy (me

11

B e o) I —— =

parison, we also present the heavy-hole dispersimshed 0.0 0.2 0.4 06 0.8 1.0
lineg) in Ge/Si QDC with the same material parameters and G ()
dot size but calculated for the model potential using our ()

semianalytical approach.This model potential of the type
V(x,y,2)=V(X)+V(y)+V(z), which approximates the
“conventional” uniform-height potential barrier of QDC, al-
Iows_forlgvza})vzes-functlon coo_rd_lnate separation and analytical FIG. 4. Heavy-hole dispersion in Ge/Si QDC with the following
solution:>*>“® The three-digit numbersiy,n,n, near the 0 o o N

N . arametersL,=L,=5, L,=2.5, H,=H,=2.5, andH,=1.25 nm
Ccurves indicate the symmetry .Of the' Correspondlng Wavglong the[[100]] quasicrystallographic directiof@@) and along the
functions. The number of zeros in tf§§d|rectlon_ is equal to 111]] quasicrystallographic directiaib). Solid lines show the dis-
(ng—1). One can see that the analytical solution agrees WeEersion found using the finite-difference method. Dashed lines show
with the FDM solution for below-the-barrier states. AITows the gispersion found for a model potential that allows for wave-
indicate the energy difference between corresponding stategnction separation in the Schdimger equation. Heavy-hole mini-
Since the relative error for 30 nodes in every direction ispands on the plot are indicated by the three quantum numbers.
very small (<1%), we can say that some discrepancy of Arrows show the correspondence of these two solutions. The en-
these solutions is mostly due to the difference in the confinergy in units of eV is counted from the position of the potential
ing potentials used in Ref. 25, where we chose to allow folbarrier. Note that below-the-barrier states obtained by different
wave-function separation. The relative error of the electromrmethods are close.
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FIG. 5. Density of heavy-hole states calculated separately for F|G. 6. Phonon dispersion in Ge/Si 3D regimented quantum dot
each miniband in the tetragonal Ge/Si QDC with the parametersyperiattice(solid line9 plotted for a structure with the following
Ly=L,=5,L,=25,H,=H,=2.5, andH,=1.25 nm shown with parameters: L,=L,=5.0, L,=25, H,=H,=25, and H,
the dashed line. Their sum corresponding to the total density ot 1 25 nm. The dispersion is shown along fRE0Q]] quasicrystal-
states is shown with the solid line. lographic direction. Acoustic-phonon dispersion relations in bulk Si

and Ge are indicated with dashed and dot-dashed lines, correspond-
energy found by this method in the center of the QBZ isingly. Dotted lines show the acoustic-phonon dispersion estimated
1.32%-11.91% and the corresponding deviation in energftom the volume fractions of Si and Ge in given QDC.
varies from 3.1 to 53.2 meV. One can also notice that the
FDM solution allows one to lift the degeneracy of somedot crystal. Although for the lowest miniband the DOS in the
dispersion branches away from the points of high symmetryartificial crystal has an arccosinelike edge, it drops to zero at
On the other hand, the accurate FDM solution presented hegdme higher energy since there is not 2D continuum, and it
can be used as a validation procedure for simpler and fastéyecomes much more complicated for higher-energy mini-
analytical solution with separable model potential, whichbands(Fig. 5. On the other hand, the shape of the DOS in
may be more practical for the below-the-barrier states. QDC is evidently different from a delta-function-like DOS of

Similar to bulk crystals, the energy dispersion in QDC hassingle quantum dots or aandom array of noninteracted
the full symmetry of the reciprocal lattice. In this artificial quantum dots. Despite the analogy in shape to the DOS of
crystal some of the energy bands are degenerate in the centegular bulk crystals, the energy scale for DOS peaks in
of the QBZ. Moving away from the point of high symmetry quantum dot crystals is a thousand times smaller.
in the center of the QBZ to a point of lower symmetry splits
the energy branchdsee, for example, the second from the
gﬁggt?;g |isnp|e:rizl.02a§)]r.anch in thiL00]] quasicrystallographic Figure 6 presents the p_honon dispersion_in ftHe00]]

Figure 5 illustrates the electron density of statB©S) qugswryst_allographlc d|r_ect!on palqulated using the FDM.
found using the simplified analytical solution and conven- his quasicrystallographic direction in QDC is parallel to the
tional definition [100] crystallographic direction in the host material, assum-

ing that the QDC structure is grown on tl@02)-oriented

substrate. The phonon spectrum in Fig. 6 is presented in the

G(E)= d_Ef d3k. extended Brillouin-zone scheme to emphasize the existence

of two different types of phonon modes in QDC that emanate
Here the integral is taken over the volume knspace from bulk acoustic modes. These modes are quasiacoustic
bounded by a surface of constant enefgyCoupling among [w(q=0)=0] and quasiopticadlw(q=0)+#0].
regimented quantum dots leads to a drastic change in the Quasiacoustic modesre nothing else but folded acoustic
electron DOS as compared to single dots or quantum welbranches of the host material. The multiple reflection of
superlattices. The double peaks seen in Fig. 5 correspond fthonons from periodic interfaces leads to a minigap forma-
the same electron miniband. The stronger the interdot intettion at the Brillouin-zone boundary. The degeneracy due to
action, the larger the energy spacing between the peaks. Fontersection of different branches is lifted everywhere except
a given structure the energy spacing is several dozens d&6r the points of high symmetry. The same figure shows the
meV. In quantum well superlattices the electron DOS has aacoustic-phonon dispersion in bulk &lashed lines and
arccosinelike form superimposed over a characteristic “stairbulk Ge (dot-dashed lingsalong the[100] crystallographic
case” due to a 2D electron continuum in planes perpendicudirection. The longitudinal and transverse sound velocities
lar to the growth direction. This is not the case for a quantunare assumed to be, =8433.2 andv;=5844.6 m/s for Si,

C. Phonon spectrum in QDC
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and v, =4913.8 andv;=23542.4 m/s for G&® respectively. ' T ' 7
The value of the group velocity for the quasiacoustic 45
phonons in QDC lies between Si and Ge sound velocities
and it is not defined by the volume fractions of two constitu-
ent materialgsee the dotted lines in Fig.).6Even in solid
alloys where atoms of two materials are randomly distributed
elastic properties change almost linearly only in “one-mode
behaved” systems such as NgK,Cl.?” The composition
dependence of phonon energy in theGs,_, alloy is far
from linear?® In systems with a spatial regimentation like in
QDC the deviation from linear dependence should increase.

The quasiacoustic dispersion branches deviate downwards
from the linear dependence at higher phonon energy. The
transverse mode, which is doubly degenerate at the zone cen
ter, splits at the zone boundary. If the wave propagates along
the [[100]] quasicrystallographic direction in QDC with te-
tragonal symmetry d,=d,#d,), two shear mode§010]]
and[[001]] are different. Ifd,>d, the [[010]] mode bends
more strongly than thg001]] mode. However, if the phonon
wavelength is large compared to the QDC peridd), e.qg.,
N=2m/|g|>|d|, acoustic wave properties are determined by
the averaged medium parametefective-medium approxi-
mation and the fine structure of the medium does not
strongly affect the wave propagation. Indeed, this is clearly
seen in the extended zone presentation when the phonor
wave vector approaches the third Brillouin zone, which cor-
responds to the period of the quantum dot superlattice
=7.5 nm along this direction. At this value of the wave vec-
tor, the slope of the quasiacoustic modes that defined the
group velocity increases.

Quasioptical modescorrespond to “nearly standing”
waves. One can view them as created by periodic scatters
such as quantum dot interfaces. These modes can be induce
inside quantum dots or in the space between them. A “true”
standing wave would have a completely flat dispersion rela- -
tion, which reflects the fact that this wave does not propagate > 4 [
through the crystal. In contrast, the dispersion branches ofé 2.5F \\_—_f, 7
guasioptical modes can have a minimum. The latter means
that these modes propagate slowly going back and forth. Weg 2| | y —
refer to these modes as quasioptical since they have a nond
zero energy in the center of the Brillouin zone, e.g., a cutoff
frequency. At the same time one should emphasize that these
modes are also emanating from acoustic bulk phonon modes.
The regular optical-phonon modes have much higher energy. 11
In Ge/Si QDC of the considered geometry the lowest qua-
sioptical branch has the energy of about 2.6 meV at the zone 05l
center. In bulk Si the longitudinal-opticalLO) and

15}

transverse-optica(TO) phonon energies arw| =% wq Y,

T T 0 1 1 1 1 1 1 1 1 1 1
=64.3meV. In buk Ge they arefiw =fhw 0 0.2 04 0.6 0.8 1
=37.2meV? It is obvious that emergence of many qua- N
sioptical phonon branches in QDC that have low character- gy (nm™)
istic energy may dramatically modify carrier energy relax- ®)

ation processes in such structures. This is somewhat
analogous to the change that electron-phonon interaction un-

dergoes in semiconductor quantum wirés: FIG. 7. Phonon dispersiogsolid lineg and the first heavy-hole

miniband(solid line with dot$ shown alond[100]] (a). [[111]] (b)
quasicrystallographic directions in Ge/Si QDC with the following
parameters: L,=L,=5.0, L,=25, H,=H,=25, and H,

Unlike “real” crystals where atoms, lattice geometry, and =1.25 nm. For convenience, the heavy-hole energy is counted from
interatomic distances are fixed entities, quantum dot supréhe miniband minimum.

D. Tuning transport properties of quantum dot supracrystals
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crystals represent ensembles of designer atoms with potential Analyzing obtained numerical resulsee Fig. 4 we are

for tuning their transport and optical properties. As an ex-able to make the following important observation. The exis-
ample, we analyze here a possibility of achieving supprestence of 3D minibands in quantum dot superlattices may
sion or anisotropy of some types of electron-phonon scattefesult in nonlinear dependence of electrical conductivity on
ing in QDC. Suppression of electron-phonon scattering coulghe applied bias. The latter follows from the various possi-
be beneficial for a variety of reasons, from improved pros+jlities for position of the quasi-Fermi levéQFL) with re-
pects for observation of Bloch oscillatidtigo applications spect to miniband edges. When the QFL is below the first
of Gg/Si QDC in photodetectors and t_hermoelectric deviceSminiband or lies in a gap between minibands, QDC manifest
The important parameters of the carrier band structure thaf asjinsulator or quasisemiconductor properties depending
deflne_s electron-phonon scattering are tfiest) _mlnlband_ _on the temperature. When the QFL is inside a miniband,
half width A, and the energy gap between the first two mlnl'QDC exhibit quasimetallic properties. This changing behav-
bandsE, —E, . iPIr may lead to quasiphase transitions aregjative differen-

Let us consider single-phonon-assisted processes, whi - X
. lal conductivityof regimented quantum dot structures. The
are usually the most important ones. We compare heavy-hole

and phonon-dispersion branches aldht00]] and [[111]] negative differential conductance in self-assembled
quasicrystallographic _directionsee Figs. @) and Ab)]. MxGa-x-As/GaAs quantum dot arrays has recently been
The first heavy-hole branches are shown with solid linedneasured at a temperature of 45K

(marked with circles A hole (or an electroih can scatter

from its initial stateE(k;) to the final statee(k;) with pho-

non #Q(q) assistance if and only if both energy- V. CONCLUSIONS

conservation E(kq)—E(ki)=AQ(q) and momentum- We obtained the electrofiole) and phonon energy spec-

conservatiork; —k;=q laws are satisfied. Assuming a linear : . . .
) . : tra in a three-dimensional regimented quantum dot superlat-
acoustic-phonon dispersion for small wave vectors, e.g.

7Q(q)=%vyq, one can find from the above equations theﬁce by sol_vmg the S_chnqnger equation in the gnvellope
condition for the allowed acoustic-phonon-assisted transiy/ave-function approximation and elasticity equation in the
continuum approximation. Both equations have been solved

tions:
numerically using the finite-difference method. Electron
E(k)—E(k;) (hole) and phonon densities of states, required for modeling
Wz vg- (7) of transport and optical properties of quantum dot superlat-
LY

tices, were also calculated. Three-dimensional regimentation

Equation(7) can be graphically interpreted as a horde to theof quantum dots in such superlattices brings a number of
hole dispersion with the slope equal to the acoustic-phonoiiteresting analogies with bulk semiconductor crystals. Cou-
group velocity. In tetragonald,=d,>d,) QDC the heavy- pling among quantum dots in such a regimented structure,
hole and phonon dispersion aloffd00]] [see Fig. 7a)] and  e.g., quantum dot crystal, results in formation of extended
[[010]] directions generally have the smallest value of theelectron states and minibands provided that the disorder in
slope, while[[111]] [see Fig. )] is the direction of the the system is small. We demonstrate that the acoustic-phonon
steepest branches. As one can see in Hi@. for given pa-  dispersion in the quantum dot superlattice undergoes strong
rameters of QDC there are no phonons available that cafunable modification, which leads to emergence of quasiop-
scatter holes within the santérst) miniband. Roughly, this tical branches. These branches are much lower in energy
is because the hole miniband is very flat. Along [fEL1]]  than “true” optical phonons in bulk semiconductors and thus
quasi-crystallographic directiofsee Fig. Tb)] the slope of  may strongly affect energy relaxation processes. We also dis-
the first hole miniband is much larger than the phonon groug;ssed some important phenomena that originate from the
velocity of any branch. It results in scattering suppression irbpecific electron and phonon spectra in quantum dot super-
approximately 80% of the Brillouin zone except for the small|j34ices  such as negative differential conduction, carrier-
areas near the center and the Brillouin-zone boundary. Thu honon, scattering anisotropy, and suppression. ’
thg hole-single-phonon scattering in QDC displays spatia Note Added in ProofwWe Iez;\rned about a recent theoreti-
anisotropy. . _ _ cal study* that suggests that minibands in quantum dot su-
Interminiband transitions with assistance of one phonorberlattices are rather robust against morphological or con-

are forbidden for the considered structure. The minigap beﬁgurational disorder, which adds validity to the assumptions
tween the first two minibands shown in Fig. E,—E; 240 in this work.

~80-100 meV, is larger than the optical-phonon energy
even in the bulk host materiali | o=7%wio=64.3 meV
for Si andfiw| o=Hhwio=37.2 meV for G&). At the same
time, multiphonon scattering in QDC may play a significant
role in energy relaxation processes due to the presence of This material is based upon work supported in part by the
many quasioptical-phonon branch@ge Figs. 6 and)7 At National Science Foundation under CAREER Award No.
room temperature, these low-energy branches should have0893959 to A.A.B., and AFOSR STTR Contract No.
high population density in accordance with Bose-EinsteinF49620. O.L. is indebted to Professor L.P. PryadW&R)
statistics. for his help with numerical solution.
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